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SUMMARY 
The development and application of a non-linear 3D hydrodynamic model are described. The model is based 
on the wave equation rearrangement of the primitive 3D shallow water equations with a general eddy 
viscosity formulation for the vertical shear. A Galerkin procedure is used to discretize these on simple six- 
node elements: linear triangles in the horizontal with linear variations in the vertical. Resolution of surface, 
bottom and interfacial boundary layers is facilitated and total flexibility is preserved for specifying spatial and 
temporal variations in the vertical viscosity and density fields. A semi-implicit time-stepping algorithm 
allows the solutions for elevation and velocity to be uncoupled during each time step. The elevation solution 
is essentially a 2D wave equation calculation with a stationary sparse matrix representing the gravity waves. 
With nodal quadrature the subsequent velocity calculation is achieved by factoring only a tridiagonal 
diffusion matrix representing the vertica! viscous terms. As a result the overall calculation scales com- 
putationally as only a 2D problem but provides the full 3D solution. Application to field-scale problems is 
illustrated for the English Channel/Southern Bight system and the Lake Maracaibo system. 

KEY WORDS Finite elements Hydrodynamics Three-dimensional hydrodynamics Non-linear hydrodynamics 
Tidal hydrodynamics 

1. INTRODUCTION 

Herein we address the motions of estuaries and coastal seas under the classical shallow water 
assumptions-a turbulent, incompressible, hydrostatic fluid, partially mixed vertically but 
effectively inviscid horizontally, driven by rotation, wind, tide and density gradients. We develop a 
general 3D shallow water wave equation in the time domain, show its efficient implementation on 
simple 3D finite elements and display some illustrative results from two field-scale simulations. 

In a previous paper' we presented a 3D finite element model for linearized problems subject to 
periodic gravity and wind forcing. In that restricted context we were able to obtain general 3D 
solutions with an uncoupled algorithm in which the elevation is obtained by a 2D finite element 
calculation and the velocity profile recovered afterwards either analytically or numerically. In the 
numerical case the computational effort is limited to the factorization of complex tridiagonal 
matrices beneath each horizontal node. The overall computational effort therefore scales only as a 
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2D scalar problem. Further, the elevation solution may be obtained with any 2D harmonic 
shallow water code, with straightforward modifications to incorporate the vertical structure and 
bottom stress-in effect, one solves an equivalent 2D problem with modified bottom stress, 
Coriolis and wind stress parameters which depend on the distribution of vertical eddy viscosity 
and bottom slip coefficient. An extension of this method2 allows the incorporation of baroclinic 
forcing for diagnostic purposes. Our objective in this paper is to develop a time-stepping 
algorithm with analogous structure and benefits for the general case of non-linear, aperiodic 
motions. 

The linearized equations contain no horizontal gradients of velocity at depth. As a result the 
horizontal and vertical behaviour can be completely uncoupled and one can construct and 
interpret 3D solutions with only a 2D finite element mesh. With the full non-linear equations the 
presence of spatial gradients at depth demands a full 3D mesh. Below we show, however, that with 
the proper formulation, mesh selection and solution algorithm the effective uncoupling of vertical 
and horizontal modes may still be achieved, such that programs for mesh generation and 
postprocessing, as well as the solution algorithm itself, may still be built effectively within the 2D 
paradigm, with 1D extensions for the vertical. 

The wave equation approach which we utilize was developed originally for the 2D vertically 
averaged shallow water  equation^.^ Its implementation on finite elements has proven efficient, 
accurate and free of parasitic wrinkles which have historically infected finite element studies in this 
arena. In particular, the wave equation is effective on the simplest linear triangles without recourse 
to artificial viscosity or other smoothing mechanisms. Most recently, a field-scale simulation 
exercise has been completed in the English Channel/Southern Bight4 in which (a) simulations of 
190-day duration were successfully computed,’ (b) results of implicit’ and explicit6 time-stepping 
as well as harm~nic’”~  calculations have agreed with each other and with conventional finite 
difference models’ and (c) a reasonable fit with field data was obtained without calibration. We are 
thus encouraged to pursue the 3D extensions and to do so in a general way which allows the 
simulation of both layered and continuously stratified systems. We limit this presentation to 
simple eddy viscosity closure for the vertical mixing but preserve full flexibility for later 
incorporation of turbulence energy closure. In the same spirit we focus on the hydrodynamic 
response to externally specified density fields. 

An additional feature of the finite element implementation of the wave equation formulation is 
that mass matrix diagonalization may be defensibly achieved via ‘nodal quadrature’-i.e. use of 
spatial integration formulae in which the quadrature points coincide exactly with the nodes.* This 
has enabled very effective simulations on the simplest linear elements. Both harmonic and implicit 
time-stepping solutions can be achieved with a sparse matrix factorization of the depth matrix 
alone, the subsequent velocity calculations being explicit owing to the diagonal mass matrix. In 
the explicit time-stepping case both depth and velocity may be calculated explicitly. These are 
properties which have historically been enjoyed by finite difference methods and their successful 
implementation on finite elements is very desirable. We strive to preserve these properties in 
adding the vertical dimension. 

Overall, we find that a very effective, complete 3D hydrodynamic model may be constructed by 
judiciously combining the progress achieved in 2D time stepping with 3D extensions in the general 
spirit of our harmonic model. The use of the wave equation eliminates the problem of spurious 
gravity waves on simple elements; a semi-implicit time-stepping scheme uncouples the elevation 

* It is important to note that this quadrature rule is applied to all terms in each weighted residual expression, not 
arbitrarily to the mass matrix alone. 
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from the velocity in each time step; and the use of nodal quadrature renders the momentum 
equation tridiagonal on simple elements. The use of simple elements simplifies the algorithm and 
its future extensions and can significantly reduce the computational overhead in pre- and 
postprocessing. 

2. GOVERNING EQUATIONS 

We solve the 3D hydrodynamic equations with the conventional Boussinesq and hydrostatic 
assumptions. There are no horizontal shear stresses and a general eddy viscosity formulation is 
used to represent the vertical shear stress. The vertical viscosity and density field are assumed to be 
time- and space-dependent with no restrictions on their functional dependence. Using the 
following notation, 

fluid velocity, with Cartesian components (u, u, w )  
free surface elevation 
bathymetric depth 
total fluid depth, H = h + C 
vertical eddy viscosity 
fluid density 
gravity 
Coriolis vector, directed vertically 
gradient operator 
horizontal gradient operator 
horizontal Cartesian co-ordinates 
vertical co-ordinate, positive upward, - h <z < { 
time, 

we write the 3D equations for continuity, 

v.v=o, 
and horizontal momentum, 

where R is the baroclinic pressure gradient: 

R(x7 y ,  Z, t)= --j g 5  Vx,pdz. 
Po 2 

The depth-averaged forms of equations (1) and (2) are 

aH -+ V, . Ht = 0, 
at (4) 

where the overbar indicates a vertically averaged quantity. We rearrange the latter two equations 
to obtain the shallow water wave equation in three steps: (a) differentiate (4) with respect to time; 
(b) eliminate aHV/at using (5); (c) add equation (4) weighted by a constant q,. The result is the 
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shallow water wave equation: 

In this 3D version there are two notable departures relative to the usual 2D version? both the 
bottom stress and the vertical average of the momentum convection terms are preserved in their 
exact 3D form. The expression of these in terms of the actual, instantaneous 3D velocity profile 
rather than in terms of its vertical average is of course one of the goals of 3D modelling. 

We solve these equations subject to conventional horizontal boundary conditions on depth or 
normal transport, and to vertical boundary conditions on shear stress. At the surface we enforce 
the atmospheric shear stress: 

At the bottom we use a conventional slip condition relating shear to the bottom velocity: 

Nel =HT(v,) ,  (7b) 
a2 z = - h  

in which r is a general non-linear function of the bottom velocity vb. Inserting (7a, b) into (6), we 
arrive at the final form of the wave equation: 

aZH aH 
~ + t o - - V x y  * [V,, . (HG)+gHV, , [  + f  x HS- to  H i -  H'P + H r -  H R ]  = O .  
at dt (8) 

We solve (8) for [, (2) for the horizontal components of v and (1) for the vertical velocity w. 

3. THREE-DIMENSIONAL ELEMENTS 

We have pursued the simplest general approach to the vertical: linear finite elements. These 
provide the full geometric flexibility associated with the finite element method, close no options 
with respect to the incorporation of baroclinic motions and turbulent closure, and establish a 
baseline against which more complicated elements may be tested. 

A design principle at the outset has been operational simplicity and we have sought to exploit as 
much as possible the nearly 2D structure of the equations and the existing body of 2D pre- and 
postprocessing software. As a result we have investigated the six-node elements illustrated 
conceptually in Figure 1, arranged in a stack of topologically identical layers of varying thickness. 
These elements admit nodal quadrature-i.e. use of quadrature points coincident with the nodes 
will exactly integrate their volume. We are careful to require that nodes line up perfectly in the 
uertical. The operational gain in mesh generation is clear-only one 2D mesh need be generated, 
based on conventional criteria related to local depth and horizontal geometry, and the vertical 
dimension can be generated analytically on the basis of separate time-dependent criteria. In 
addition, the combination of the vertical alignment with nodal quadrature renders the momentum 
calculations tridiagonal, with obvious practical implications (see below). Finally, we allow nodes to 
moue vertically in order to track internal interfaces as well as the free surface and to accommodate 
the general evolution of the viscosity structure. 

Interpolation of the dependent variables is achieved on the mapped version of the mesh shown 
on the right side of Figure 1. The mapping from the native (x, y, z) system into the local system 
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e 

\ \  

Figure 1. Main features of the layered mesh: element sides perfectly vertical; variable mesh spacing to resolve boundary 
and internal layers (a, b, c); uniform mesh spacing in mapped (x, y, E )  system; nodes free to move vertically to track (a) free 

surface and (c) internal fronts; all layers have identical topology; V,,,, invariant with depth 

(x, y, E )  leaves the horizontal co-ordinates unchanged; the vertical mapping is isoparametric: 

Here zi(t) is the time-dependent vertical location of node i and (bi are the basis functions used to 
expand the velocity solution: 

Derivatives with respect to z are straightforward in the local co-ordinate system; the other 
derivatives are slightly complicated by the time-dependent mapping: 

where D/Dt indicates differentiation following the motion of the mesh and where 

is the vertical motion of the mesh. The derivative D/Dt is the natural time derivative for quantities 
expanded in the (x, y, E )  basis. For example, from (lo), 
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Substitution of these transformations into the momentum equation yields, in the ( x ,  y, E )  system, 

Dv 

in which Vxyla is the horizontal gradient holding E constant, and 

F = W - Wme& -V ' v,, I &Z. (17) 
The quantity F is exactly the flux through the surface E = constant. Where it is desirable to track 
material surfaces within the fluid, F =O and the momentum equation is especially simple. In these 
cases F = 0 prescribes the value of wmesh: 

wmesh = w - v  ' Vxy, &Z. (18) 

Alternatively, we may wish to dictate the mesh motion-for example, in a boundary layer we may 
require a surface of constant 0 = (z - C) /H,  

(19) 
ar 

wmesh=(O+ l)z, 
or constant z, 

Wmesh=O. (20) 

In such cases where wmesh is given, F may be computed from (17). The continuity equation is 
similarly transformed in the (x, y, E )  system: 

aw - = - v,,,, * v + av - * VxylrZ  

aZ az 
The wave equation (8) is of course unaffected by these transformations. 

A final point relative to the mesh in Figure 1 is that the numerous horizontal gradient 
operations in the transformed equations are invariant with depth and time, with attendant 
economy in equation assembly. These are facilitated by re-expressing the basis in equivalent form 
with the horizontal and vertical variations separated: 

4i j (x ,  Y ,  E ) =  J+'i(x, Y)Ej(E), (22) 
where the double subscripts ( i , j )  refer to horizontal and vertical positions in the mesh, Wi are the 
standard linear triangular bases in the horizontal plane and E j  are the 1D chapeau functions in the 
vertical. In this notation it is clear that Vx,,la$ij is the familiar V,,Wi in the plane, here depth- 
invariant, and the Jacobi determinant (JI at any 3D point is simply Az, the local vertical height of 
the element. 

4. DISCRETIZATION AND SOLUTION PROCEDURE 

Here we present a semi-implicit algorithm in which the basic linear gravity wave terms are treated 
in a centred, implicit manner and the depth, horizontal velocity and vertical velocity are obtained 
sequentially rather than simultaneously. 

4.1. The depth solution 

A straightforward Galerkin discretization of the wave equation is used. Note at the outset that 
this is a 2D equation. While we use the customary finite element notation, the 3D basis 4i is 
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reduced to its horizontal projection Wi and all domain and boundary integrals are performed in 
the (x, y) plane. 

(g W i )  + ( T ~ :  W i )  + ([V,;(HG)+gHV,,[ +f x HV-T,HB- H I  + HT- HR] -VXy Wi> 

The weak form which we use is a weighted residual form of (8): 

where ( ) and f represent integration over the (x, y) plane and its boundary respectively. Note that 
this form displays as the natural boundary condition the hydrodynamic transport Hi-A in the 
boundary integral. Expansion of H and [ in the basis Wi, 

leads to the Galerkin form 

= - ( [V, '(HG) + g(V,,C + f x H i  - rOHi - H'Y+ HT- HR] * V,,Wi) 

- $(? + z0 Hi)  - A Wids. 

(Here we have purposely split the gravity term in two and moved the non-linear part to the right 
side in order to render the implicit tirne-stepping matrix (below) stationary.) 

A three-level, semi-implicit discretization is adopted in time, with the terms on the left side of 
(25) centred, implicit and those on the right-side centred, explicit. With the superscript k indicating 
the time level we define 

AH, H;+' -H;- 1 dcj (2W 
and approximate the time derivatives by second-order differences: 

dH. AH. >=I 
dt 2At' 

d2H. H;+'-.2H;+H;-' - - A Hj- 2(H3- HF-') 
dt2'= At2 At2 

In the gravity term on the left side, C is implicit and centred: 

Substitution of these approximations into (25) and evaluation of all the right-side terms at time 
level k yields, after rearrangement, the linear system 

AijAHj= rwi, (27a) 



514 

where 

D. R. LYNCH AND F. E. WERNER 

BAt2 
A, = ( Wj Wi) (1 + T) + -+ghV,, Wj - V,,  Wi), 

rwi= -At2([Vxy.(Hfi)+gHV,,,5+f x H 5 - r o H 5 - H Y + H ~ - H R ] . V , ,  Wi) 

+ 2((Hk-Hk-')Wi) + BAt2 (ghV,,(Tk - c k - ' )  * V,, Wi) - A t 2  -+tOHV * A Wids (27~) f(Y ) 
and all terms without a superscript are evaluated at time level k. 

We evaluate all integrals numerically with quadrature points at the nodes in all cases. As a result 
the matrix Aij  is diagonal when 6=0, enabling a perfectly explicit time step for AH. More 
generally, Aij  is stationary, sparse, banded and symmetric. Its LU decomposition once at the 
beginning of a simulation allows efficient calculation of AH, uncoupled from the unknown 
velocity vk+ during any time step. The quantities Hi, H5, r, Y and R are all obtained at time 
level k (with vertical integration as appropriate) at each node in the horizontal mesh and 
interpolated with the basis Wj. 

Boundary conditions on depth are enforced exactly and the corresponding wave equation is 
discarded. Boundary conditions on normal transport are enforced through the boundary integral 
in addition to their enforcement directly on the velocity solution (see below). 

Overall, this depth calculation is essentially the same as that introduced by Lynch and Gray,3 
with Kinnmark'sg introduction of the constant factor T ~ .  We have generally adopted this 
modification in our 2D  simulation^;^*'^ in fact the original3 form in which the term 7aH/at  is 
introduced through the bottom stress does not apply in 3D since the bottom stress is not expressed 
in terms of the vertically averaged velocity. 

4.2. The horizontal velocity solution 

The solution for the horizontal components (u, v) of v is obtained by a straightforward Galerkin 
treatment of the momentum equation (16), with known gravity forcing at the new time level. The 
weak form is 

in which ( ) and $ denote the 3D volume and boundary integrals. Note that the natural boundary 
conditions on shear stress appear in the latter integral; this is the vehicle for applying the wind and 
bottom stresses, equations (7a, b). The complication of the Coriolis term is removed by 
introducing a complex surrogate for v, v = u + jv, where j = ,/( - 1): 

Here rvi combines the known baroclinic, gravity and convective terms: 

r v i = (  

Expansion of (u, u )  and therefore v in the basis 4i then yields the Galerkin form 
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A two-level time discretization is used for momentum, with all terms centred at time level k +: 
except for the convective terms, which are lagged at time level k for computational efficiency.* 
With the definition of the time-centred average 

the second-order approximation for the time derivative becomes 

Dv. . vk' - vj" 2(vT - y;) - - I -  J -- 
D t  At At * 

Substitution of these approximations on the left side of (30) gives 

in which all quantities in r f*  are centred except for the convective terms: 

The use of nodal quadrature renders the mass matrix (&i4j )  diagonal, as expected; but in 
addition it renders the stiffness matrix (N(i%#+/az) (aq5j/az)) tridiagonal, with algebraic connec- 
tions only among nodes which share the same vertical line. This latter result is evident by 
inspection of Figure 2, where the vanishing of a4 i /Bz  along neighbouring vertical lines is a direct 
consequence of the vertical alignment of the mesh. In the limiting case of constant N and Az the 
tridiagonal left side of (32a) reproduces conventional second-order finite difference expressions for 
vertical diffusion. 

Vertical stress boundary conditions are enforced through the boundary integral. At the surface 
known values of the wind stress H'Y are used. At $he bottom a partial slip condition is employed 
implicitly. In the simple linear case 

m* = KV* (33) 

(34) 
is used. In either case the coefficient of the unknown v* is embedded in the left-side matrix. 

During each time step following the solution for C k +  ', the complex tridiagonal system (32) is 
assembled under each horizontal node and the appropriate vertical boundary conditions are 
applied. (Note that since the nodes move vertically, all integrals are evaluated on the mesh at the 
centre of the time step.) The system is then solved directly by the Thomas algorithm." Horizontal 
boundary conditions on v -A are then enforced directly on the solution by sacrificing the normal 
component of velocity computed as above in favour of the exact boundary value. 

is used. In the more common quadratic case the quasilinear form 

Hr* = K I V k l  g+' = 2KI V k  I V* - KI $ 1  Vk 

* This is analogous to current practice in 2D wave equation sir nu la ti on^.^.^'^' lo An earlier 2D formulation3 used a three- 
level, leapfrog momentum equation with centred, explicit convective terms. This has led to non-linear instabilities and has 
been abandoned. 
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ei = 0 

Figure 2. Six-node element with vertical sides. The features shown illustrate the tridiagonality stemming from nodal 
quadrature 

This procedure for enforcing normal boundary conditions on velocity is exactly analogous to 
that used previously in 2D.59'0 In effect the normal momentum equation is removed in favour of 
exact enforcement of v * A. However, the Coriolis term in the tangential momentum equation is not 
affected by this procedure and therefore the tangential force balance 'feels' the normal boundary 
condition only weakly. Exact specification of v - A  in the tangential momentum equation is 
easily incorporated into the tridiagonai structure with no important algorithmic consequences. 
Numerical experiments to date indicate negligible effect of this option, although it deserves 
further study. 

4.3. The vertical velocity solution 

Computation of the vertical velocity w is based on the continuity equation (21). We expand w in 
the basis 4i (the same basis used for u and v) and use a weighted residual formulation combining 
the Galerkin method in the horizontal and the subdomain method in the vertical: 

1 )  7 ( P i 2 ) w j =  -( ( v x y , & . v - - . v x y , ~ z  aV Pi 
aZ (35) 

Here the weighting function P i  equals the 2D linear triangular basis function Wi in the layer of 
elements immediately below node i and vanishes elsewhere. Equivalently in the ( i ,  j) numbering 
system we have 4ij= Wi(x, y )E j (&)  and P i j -  Wi(x, y)Sj (&) ,  with E j  the 1D chapeau functions as 
above and Sj a step function in the vertical. By inspection of Figure 2 one concludes that the 
matrix (Pia4j/az)  is of bidiagonal form, i.e. only one non-zero off-diagonal entry, coupling each 
node only with its neighbour immediately below.* The system can therefore be solved explicitly 
from the bottom up, beginning with the boundary condition that the bottom velocity vb be parallel 
to the bottom: 

W b =  -Vb'Vxyl~h (36) 

(z = - h(x, y)  defines the bottom). Since this condition requires differentiation, we enforce it in the 
Galerkin sense: 

which is explicit under nodal quadrature. No other constraints are exercised on w. In particular, 
the flow is allowed to slip freely at vertical sidewalls. 

* Use the standard Galerkin version of (35) would produce a tridiagonal form. 
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During each time step following the computation of (u, D ) ~ "  we assemble (35) and (37) beneath 
each horizontal node and solve for wk+' sequentially from the bottom up. All integrals are 
evaluated with the mesh positioned at time level k + 1 and the right side is similarly evaluated at 
time k+ 1. The remarkable outcome of the combined methods for (u, u) and w is that with the 
convective, gravity and bottom stress terms known the entire 3D velocity field may be computed 
with only tridiagonal effort. 

4.4. Mesh motion 

The details of mesh motion are left largely unspecified and may be tailored to specific 
applications. The general principles laid out in Section 3 above relate the nodal trajectories zi(t) 
intimately to (a) the time-dependent isoparametric mapping, essentially dictating the geometry 
and limits of integration for the 3D volume and surface integrals, and (b) the evaluation of spatial 
derivatives within the elements as in equations (16) and (17). 

is done first on the 
centred mesh at time k. This dictates the new position of the surface nodes, following which the 
interior node positions z:+' are determined to suit the application. The mesh is then repositioned 
at z:"" and wz:i2 is computed as (z:+' - z : ) /At  and used in the momentum equation which is 
assembled and solved at the centred time k ++(with the convective terms lagged a t  time k). Finally, 
the mesh is repositioned at z:" to assemble and solve the continuity equation, which is evaluated 
entirely at time k +  1. The sequential ordering of the calculations is shown in Table I, where it is 
clear that the time centring of the Galerkin equations is maintained in the evolution of the 
geometry as well as the hydrodynamic variables. 

Operationally, a time step proceeds as follows. The computation of 

5. RESULTS 

As a first test case we have revisited one of the linearized analytic solutions used previously in 
testing our harmonic model-the so-called quarter-circle test case. The problem geometry, 
boundary conditions and horizontal mesh appear in Figure 3 and are unchanged from Refer- 
ence 1. Bathymetry varies quadratically with r: h=hor2.  The problem is driven by tidal forcing 
at  the open boundary, with the tidal amplitude given along the open boundary as C0 = 0-1 cos(20), 
setting up a 180" phase change about 0=45". To permit the use of the analytic solution, N is 
constant through the depth but varies with ( x , y )  such that N / h z  is constant.I2 We used 10 
equally spaced elements in the vertical, with linear bottom stress coefficient sufficiently large 
to enforce no slip at the bottom. All other non-linear terms were retained but their effects 

Table I. Overview of a time step. The computation proceeds sequentially from top to bottom 

Dependent Weighting Mesh 
Equation variable Basis functions functions Centered at location 

Wave rp+ Wi(x, Y )  Wi (x, Y) k t 
Momentum (u, v)k  + @'i(x, Y)Ej(&) Wi(x, Y)Ej(E) k+1/2 2 + 1 / 2  

Continuity d+1 Wi(x, Y)Ej(E) wi(x, Y ) ~ , ( E )  k +  1 $ + I  
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I r* -2 
Figure 3. Analytic solution test case. There are 221 nodes and 384 elements in the horizontal. The hatched lines indicate 

impermeable boundaries; along r = r z  the elevation time series is prescribed. Node A is sampled in Figure 7. 

(4 
O . W , ,  , , , , 

60 80 100 120 140 160 

r (km) 

Figure 4. Tidal amplitudes in 001 m intervals for the test case in Figure 3 (a) normalized analytic result, interpolated on 
the FE grid; (b) normalized numerical result; (c) analytic (solid lines) and numerical results versus r for B=O (+) and 

e = n/i 6 ( ) 
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- This magnitude = 2.2813E. 02 

- This magnitude = 2.2939E. 02 

J I 
Figure 5. Numerical velocities (m s-') at t = O  for the test 
case in Figure 3 (a) surface; (b) mid-depth; (c) one level 

above the bottom 

. .  

519 

Figure 6. Analytic velocities (ms-') at t = O  for the test 
case in Figure 3: (a) surface; (b) mid-depth; (c) one level 

above the bottom 
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minimized by use of small-amplitude forcing. The physical parameters are: 

rl =60960 m 
r2 = 1 m 0 0  m 
ho=3.048r;2  m-' 

IC = 10 m s - l  (effectively, no slip) 
o= 1.41 x 10-4 s - 1  

o h 2  
-= 10 

N 
f=O. 

The computed elevation is displayed with the analytic result in Figure 4; Figures 5 and 6 show 
velocity plots at three different constant-& levels; and Figure 7 shows the velocity as a function of 
depth at mesh point A. In all cases the agreement with the analytic solution is excellent and 

c 

-0.06 -0.04 -0.02 0.00 0.02 0.01 0.06 

U-velocity (dsec) 
(b) 

HOURS 
HOURS 
HOURS 
HOURS 

V-velocity (mlscc) 

Figure 7. Exact (solid lines) and numerical velocity profiles at four points in time, at mesh point A in Figure 3: 
(a) x-velocity; (b) y-velocity 
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Figure 8. 
0,005): (a) 

Co-amplitude plots of the M ,  tide in the English Channel/Southern Bight model, computed with ( N o ,  ~)= (0 .2 ,  
fully non-linear response; (b) convective terms deleted; (c) wave drift terms deleted; (d) both convective and wave 

drift terms deleted. Amplitudes are in centimeters 

essentially equivalent in quality to that reported in Reference 1 for the harmonic model. (In these 
and all subsequent results the two numerical parameters 8 and T~ are set at 075  and 2.0 x s -  ' 
respectively.) 

As a test of the non-linear behaviour of our model we have recomputed the barotropic tides in 
the English Channel/Southern Bight using the same horizontal mesh studied previou~ly.~. lo  In 
computing the 3D response we used 14 equally spaced vertical elements and a quadratic bottom 
stress, equation (34). Following Davies,' we used a vertically homogeneous viscosity propor- 
tional to the square of the local vertically averaged velocity: 

N = NolVlz. (38) 
For test purposes we simulated only the M,, M ,  and M, constituents in order to obtain the main 
internal M4 interactions, as in Reference 14, and experimented with removing the convective and 
wave drift* terms. The simulation was run for an integral number of M ,  periods, and once in 

* Product of 1; and v in the vertically averaged equations, and the geometric effects of time-dependent vertical mesh 
stretching in the momentum equation. 
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__ This magnitude = 2.83%E+00 

1 

> 

I I I I 

__ This magnitude I 1.5163E + 00 

Figure 9. Velocity (m s- I )  in the Channel/Bight model forced by 11 constituents at 10: 35 on 17 March 1976: (a) surface; 
(b) two elements above the bottom 

dynamic steady state the three constituents were recovered by Fourier transform of the computed 
time series. The fully non-linear 3D solution with ( N o ,  K) =(0.2,0905) generally gave elevation 
results in agreement with available data (e.g. Reference 15) and with previous 2D runs. Cotidal 
charts for M, appear in Figure 8, where we also show the same result obtained with the convective 
and/or wave drift terms deleted. It is clear that both terms contribute significantly to the M4 result 
and that without both mechanisms this constituent cannot be properly represented even in a 
relatively limited-area study such as this. Similar findings were reached by Pingree and 
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Figure 10. Detail of Figure 9 in the Strait of Dover: thin, surface velocities; thick, velocity two elements above the bottom 

I I I I I 

Hours after 2300 hrs, 16 March 1976 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

Figure 11. Comparison of velocity data (crosses) and model results at station 3 in the English Channel, south of 
Christchurch. Model results are plotted for the surface (solid line), near the depth of the current meter (21.2 m; short-dash 
line) and two levels above the bottom (long-dash line). The measured depth was 43 m, the current meter was at 20 m and 

the model bathymetry was 37.1 1 m 

MaddockI6 and Walters and Werner,I4 and we take this as partial confirmation that the non- 
linearities are properly captured in the present model. 

In Figures 9 and 10 we show the surface and bottom velocities for a comparable non-linear run 
forced by all 11 constituents on the boundary. Significant veering at depth is evident, due in part to 
the dynamics of flow reversal occurring at this point in time. In Figure 11 we compare the 
computed velocity time series with available data at station 3 in the Channel (south of 
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___ This magnitude = 5.66583-01 

l .. ... . . .. ..* 

Figure 14. Computed surface velocities (m s- l )  in the Lake Maracaibo system, illustrating the basic semidiurnal co- 
oscillation: ebbing in the Gulf of Venezuela concurrent with flooding in the lake. The simulation began at 00:00 on 15 

March 1976. Elapsed time is 60.5 h; the time step is 6 min; ( N o ,  ~)=(0.1, 0.005) 

Christchurch), and in Figures 12 and 13 we show example hodograph series computed at station 1 
(north of Cherbourg) along with the observations at depth. The two pairs of vertical shear 
parameters give similar elevation results, but the velocity profiles are quite different. (For further 
details see Reference 17.) 

As a third example we have revisited the Lake Maracaibo system, studied earlier with the 
harmonic model.' Since then we have completely revised the geometry and boundary conditions 
and completed a non-linear study involving the simulation of 11 coupled tidal constituents over a 
40-day period. In this case the full non-linear model was used, with quadratic bottom stress and 
vertical viscosity proportional to J1I2 as above and 14 equally spaced vertical elements everywhere. 
A representative plot of the surface velocity appears in Figure 14, illustrating the basic co- 
oscillation of the Gulf of Venezuela and the lake. Computed velocity hodograph series at 
representative points in the gulf and the Strait of Maracaibo are shown in Figures 15 and 16. The 
gulf hodographs show relatively uniform velocities in the upper layers and a bottom Ekman layer. 
The strait hodographs show greater vertical mixing owing to the high tidal velocities and shallow 
depths. The characteristic tidal phase lead at depth is clearly present in both series, although the 
strait flow is nearly unidirectional, being confined by the narrow geometry. (See Reference 18 for 
details.) 

Finally, we present some speculative results aimed at the longer-term circulation in Lake 
Maracaibo. Using the same finite element mesh as above and based on the physical description in 
Reference 19, the effects of wind and density gradient were simulated separately in the absence of 
tides. The viscosity N was set at the constant value of 0.01 m2 s- to approximately compensate 
for the absence of tides; the non-linear bottom stress parameter K was set at 0.1. In Figure 17 we 
illustrate the response to a steady, uniform wind stress at 1 dyn cm-', directed from the northeast, 
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~ Thia magnitude = 1.lOUE + 01 
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~ This mqnitude = 5.7184E + 00 

- This mqoitude = 2.991E + W 
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1 15.0 

Figure 17. Steady response of Lake Maracaibo to uniform wind from the northeast: (a) surface elevation; (b) vertically 
averaged velocity; (c) surface velocity; (d) velocity at the bottom; (e) horizontal and vertical velocities along transect 
indicated in Figure 18 (the horizontal velocities were rotated into the along-transect direction; the maximum horizontal 
velocity is 3.9 cms-', the maximum vertical velocity is 00029 cms-I). Elevation is in centimeters, velocity in cm s- '  
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Figure 18. Transect across the Lake Maracaibo basin used to display horizontal and vertical velocity fields in 
Figures 17(e) and 19(e) 

following a 10-day spin-up. The circulation pattern is qualitatively the same as that computed 
earlier with our linearized model,' with weaker velocities owing to the higher viscosity used here. 
Figure 17(e) shows the cross-basin horizontal and vertical velocities along the transect of Lake 
Maracaibo indicated in Figure 18. The circulation resembles that of an enclosed basin with no 
rotation: the surface layer flow is approximately in the direction of the wind, it downwells at the 
southwest shore, returns at depth and upwells at the northeast shore. In Figure 19 we show the 
steady response to an externally imposed density field, approximating dense water at the centre 
and bottom of the basin-idealizing the observed structure of the lake's cone-shaped hypo- 
limnion. The surface density ps is given by 

ps = p o  -t A p  cos (i e). (39) 

with Ap = 0.0012 g cm - and R, = 80 km. (For R > R,, ps = p, .) Internally, p varies linearly with 
depth, to a maximum of p, + A p  at 30 m. The resulting circulation in Figure 19 is weak, with 
convergence at the surface (Figure 19(c)), divergence at the bottom (Figure 19(d)) and compens- 
ating vertical motions sinking at the centre of the lake and upwelling at the edges (Figure 19(e)). 
There is some numerical distress near the shore, reflecting an unphysical combination of 
topography and the imposed density field. Additionally, the near-shore upwelling patterns reveal 
the coarseness of the mesh relative to both the flow and the bathymetric slopes. Overall, viscosity 
and topography dominate over rotation in this solution. The results of Figure 19 suggest that the 
observed density field cannot sustain itself in geostrophic balance with the currents. Similar 
experiments with either higher rotation representative of mid-latitude or lower viscosity produced 
a more classical gyre-like surface response with the viscous features confined to the lower depths. 
These results are strictly exploratory; investigation of the physics of this system is continuing. 



3D HYDRODYNAMICS ON FINITE ELEMENTS. I1 53 1 

- This magnitude = 9.23ZZE - 01 
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~ This magnitude = 1.0163E + 00 
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I I I 

distance along transect (km) 
Figure 19. Steady response of Lake Maracaibo to prescribed hypothetical density field (a) surface elevation; (b) vertically 
averaged velocity; (c) surface velocity; (d) velocity at the bottom; (e) horizontal and vertical velocities along transect 
indicated in Figure 18 (the horizontal velocities were rotated into the along-transect direction; the maximum horizontal 
velocity is 0.68 cms- ' ,  the maximum vertical velocity is 0.0013 cms-I). Elevation is in centimeters, velocity in cm s-'  
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6. CONCLUSIONS 

The basic hydrodynamic framework presented here has several desirable features in the context of 
continental shelf circulation modelling. 

1. The finite element method in the horizontal facilitates resolution of detailed coastal and 

2. The use of deforming finite elements through the vertical provides flexibility in vertical 

3. The simple 3D linear elements used here allow pre- and postprocessing to be achieved within 

4. The use of the wave equation form of the governing equations eliminates spurious gravity 

5. The semi-implicit time-stepping algorithm uncouples the elevation and velocity com- 

6. Nodal quadrature tridiagonalizes the velocity calculations such that the entire calculation 

7. Full flexibility for arbitrary variations in vertical mixing is preserved. 

bathymetric features. 

discretization which may evolve during the course of simulation. 

the simpler 2D paradigm. 

waves on simple elements without artificial horizontal viscosity. 

putations. 

scales as a 2D gravity wave algorithm. 

This non-linear model is generally compatible with its linearized harmonic predecessor, which 
may be used in preliminary studies and as an initial condition generator with the same mesh. The 
model tests well against linear analytic solutions and in two field studies to date. Its further 
development into a full-featured continental shelf model, including the incorporation of turbu- 
lence closure and concurrent simulation of density field evolution, is recommended. 
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